The Constrained-Monad Problem

Neil Sculthorpe

(joint work with Jan Bracker, George Giorgidze and Andy Gill)

Functional Programming Group
Information and Telecommunication Technology Center
University of Kansas
neil@ittc.ku.edu

Nottingham, England
16th July 2013

Neil Sculthorpe The Constrained-Monad Problem

Monads

Monads in Haskell

{-# LANGUAGE KindSignatures #-}

The Monad Type Class

class Monad (m :: x — x) where
return ::a —> ma
(>=):ma—(a—mb)—-mb

The Monad Laws

@ returna>=g = ga (left-identity law)
@ m>=return = m (right-identity law)
@ (m>=g)>=h = m>=(Ax—>gx>=h) (associativity law)

Neil Sculthorpe The Constrained-Monad Problem

The Problem

Sets in Haskell

import Data.Set

Selected functions from the Data.Set library

singleton :: a — Set a

toList :: Seta — [a]

fromList :: Ord a = [a] — Set a
unions :: Ord a = [Set a] — Seta

Neil Sculthorpe The Constrained-Monad Problem

The Problem

Sets in Haskell

import Data.Set

Selected functions from the Data.Set library

singleton :: a — Set a

toList :: Seta — [a]
fromList :: Ord a = [a] — Set a
unions :: Ord a = [Set a] — Seta

Monadic Set Operations

returnSet :: a — Set a
returnSet = singleton

bindSet :: Ord b = Seta — (a — Set b) — Set b
bindSet s k = unions (map k (toList s))

v

Neil Sculthorpe The Constrained-Monad Problem

The Problem

Sets in Haskell

import Data.Set

Selected functions from the Data.Set library

singleton :: a — Set a

toList :: Seta — [a]
fromList :: Ord a = [a] — Set a
unions :: Ord a = [Set a] — Seta

Monadic Set Operations

returnSet :: a — Set a
returnSet = singleton

bindSet :: Ord b = Seta — (a — Set b) — Set b
bindSet s k = unions (map k (toList s))

instance Monad Set where
return = returnSet
(>=) = bindSet - does not type check

v

Neil Sculthorpe The Constrained-Monad Problem

The Problem

Vectors

A Vector Representation

type Vec (a :: %) = (a — C)
class Finite (a :: %) where
enumerate :: [a]

Neil Sculthorpe The Constrained-Monad Problem

The Problem

Vectors

A Vector Representation

type Vec (a :: %) = (a — C)

class Finite (a :: %) where
enumerate :: [a]

Monadic Vector Operations
returnVec :: Eqa = a — Vec a
returnVeca = A b — if a == b then 1 else 0

bindVec :: Finite a = Veca — (a — Vec b) — Vec b
bindVecvk = A b — sum[va x (ka)b|a < enumerate]

Neil Sculthorpe The Constrained-Monad Problem

The Problem

Vectors

A Vector Representation

type Vec (a :: %) = (a — C)
class Finite (a :: %) where
enumerate :: [a]

Monadic Vector Operations

returnVec :: Eqa = a — Vec a
returnVeca = A b — if a==b then 1 else 0

bindVec :: Finite a = Veca — (a — Vec b) — Vec b
bindVecvk = A b — sum[va x (ka)b|a < enumerate]

instance Monad Vector where
return = returnVec -- does not type check
(>=) = bindVec -- does not type check

Neil Sculthorpe The Constrained-Monad Problem

Embedded Domain Specific Languages

{-# LANGUAGE GADTSs #-}

Embedding Monadic Operations

data EDSL :: * — x where

[fThenElse :: EDSL Bool — EDSL a — EDSL a — EDSL a

Neil Sculthorpe The Constrained-Monad Problem

Embedded Domain Specific Languages

{-# LANGUAGE GADTSs #-}

Embedding Monadic Operations

data EDSL :: * — x where

[fThenElse :: EDSL Bool — EDSL a — EDSL a — EDSL a
Return a — EDSL a
Bind - EDSL x — (x — EDSL a) — EDSL a

Neil Sculthorpe The Constrained-Monad Problem

Embedded Domain Specific Languages

{-# LANGUAGE GADTSs #-}

Embedding Monadic Operations

data EDSL :: * — x where

[fThenElse :: EDSL Bool — EDSL a — EDSL a — EDSL a
Return a — EDSL a
Bind - EDSL x — (x — EDSL a) — EDSL a

instance Monad EDSL where
return = Return
(>=)=Bind

Neil Sculthorpe The Constrained-Monad Problem

Embedded Domain Specific Languages

{-# LANGUAGE GADTSs #-}

Embedding Monadic Operations

data EDSL :: * — x where

[fThenElse :: EDSL Bool — EDSL a — EDSL a — EDSL a
Return a — EDSL a
Bind - EDSL x — (x — EDSL a) — EDSL a

instance Monad EDSL where
return = Return
(>=)=Bind

compile :: Reifiable a = EDSL a — Code

Neil Sculthorpe The Constrained-Monad Problem

Embedded Domain Specific Languages

{-# LANGUAGE GADTSs #-}

Embedding Monadic Operations

data EDSL :: * — x where

[fThenElse :: EDSL Bool — EDSL a — EDSL a — EDSL a

Return a — EDSL a
Bind .- Reifiable x = EDSL x — (x — EDSL a) — EDSL a

instance Monad EDSL where
return = Return
(>=)=Bind -- does not type check

compile :: Reifiable a = EDSL a — Code

Neil Sculthorpe The Constrained-Monad Problem

The Problem

Why is this a Problem?

A Monad instance is useful because the Haskell language and
libraries provide a significant amount of infrastructure to support
arbitrary monads.

@ The problem generalises from monads to any type class with
polymorphic class methods.

o This talk will mostly be about monads, but will conclude with some
other examples.

@ Our solution generalises to some, but not all, type classes.

o Future work:

o characterising the type classes for which it works;
e extending/adapting the solution to other type classes.

Neil Sculthorpe The Constrained-Monad Problem

Constraint Kinds

Constraint Kinds

{-# LANGUAGE ConstraintKinds #-}
import GHC.Exts (Constraint)

Constraint Kinds in GHC

The kind of a fully applied type class is the literal kind Constraint.
For example:

Ord . * — Constraint
Monad :: (x — %) — Constraint

Neil Sculthorpe The Constrained-Monad Problem

Restricted Type Classes

A Partial Solution: Restricted Type Classes

{-# LANGUAGE MultiParamTypeClasses, InstanceSigs #-}

Restricted Monad Class

class RMonad (c :: * — Constraint) (m :: x — %) where
return 1 ca =a-—rma
(>=):(ca,cb)=ma—(a—mb)—->mb

Neil Sculthorpe The Constrained-Monad Problem

Restricted Type Classes

A Partial Solution: Restricted Type Classes

{-# LANGUAGE MultiParamTypeClasses, InstanceSigs #-}

Restricted Monad Class

class RMonad (c :: * — Constraint) (m :: x — %) where
return 1 ca =a-—rma
(>=):(ca,cb)=ma—(a—mb)—->mb

Example: Set and Ord

instance RMonad Ord Set where
return :: Orda = a — Set a
return = returnSet

(>=) : (Orda,Ordb) = Seta — (a — Set b) — Set b
(>=) = bindSet

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

An alternative: Embedding and Normalisation

@ An alternative is to embed the type in another data type that does
form a monad.

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

An alternative: Embedding and Normalisation

@ An alternative is to embed the type in another data type that does
form a monad.

Not a Monad lift Is a Monad
Set a SetM a
lower

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

An alternative: Embedding and Normalisation

@ An alternative is to embed the type in another data type that does
form a monad.

Not a Monad lift Is a Monad
NM t a
lower

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

An alternative: Embedding and Normalisation

@ An alternative is to embed the type in another data type that does
form a monad.

Not a Monad lift Is a Monad
NM t a
lower

@ The key ideas are:

o NM represents a monadic computation in a normal form;
e the lift and lower functions enforce the constraint.

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

A Normal Form for Monadic Computations

m Xi X3 — ma
prim S>=
m Xo
prim

Xp—1 — M a

>
m X, Xp —> M a
prim return a

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

Embedding Constrained Monadic Computations

{-# LANGUAGE GADTSs #-

Normalised Monads as a GADT

data NM :: (x* — %) — * — x where
Return :: a —NMta

Bind =tx— (x—>NMta) > NMta

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

Embedding Constrained Monadic Computations

{-# LANGUAGE GADTSs #-

Constrained Normalised Monads as a GADT

data NM :: (¥ — Constraint) — (* — %) — * — % where
Return :: a —+NMcta
Bind tcx=tx—(x—>NMcta) >NMcta

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

Embedding Constrained Monadic Computations

{-# LANGUAGE GADTSs #-}

Constrained Normalised Monads as a GADT

data NM :: (¥ — Constraint) — (* — %) — * — % where
Return :: a —+NMcta
Bind tcx=tx—(x—>NMcta) >NMcta

Constrained Normalised Monads are (standard) Monads!

instance Monad (NM c t) where
return :: a — NMcta
return = Return

(>=):NMcta—(a—+NMctb) +-NMctb
(Returna) >=k=ka -- left-identity law
(Bind tx h) >=k = Bind tx (A x = h x >=k) -- associativity law

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

Embedding Constrained Monadic Computations

{-# LANGUAGE GADTSs #-}

Constrained Normalised Monads as a GADT

data NM :: (¥ — Constraint) — (* — %) — * — % where
Return :: a —+NMcta
Bind tcx=tx—(x—>NMcta) >NMcta

V.

Lifting Primitive Operations

lift::ca=ta—>NMcta
lift ta = Bind ta Return -~ right-identity law

A\

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

Embedding Constrained Monadic Computations

{-# LANGUAGE GADTs, RankNTypes, ScopedTypeVariables #-}

Constrained Normalised Monads as a GADT

data NM :: (¥ — Constraint) — (* — %) — * — % where
Return :: a —+NMcta
Bind tcx=tx—(x—>NMcta) >NMcta

Lowering Monadic Computations

lower ::Vact. (a—ta) > (Vxcx=tx—(x—ta)—>ta) >NMcta—ta
lower ret bind = lower’
where
lower’ : NMcta—ta
lower” (Return a) = ret a
lower” (Bind tx k) = bind tx (lower’ o k)

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

Embedding Constrained Monadic Computations

{-# LANGUAGE GADTs, RankNTypes, ScopedTypeVariables #-}

Constrained Normalised Monads as a GADT

data NM :: (¥ — Constraint) — (* — %) — * — % where
Return :: a —+NMcta
Bind tcx=tx—(x—>NMcta) >NMcta

Example: Set and Ord
type SetM a = NM Ord Set a

liftSet :: Ord a = Set a — SetM a
liftSet = lift

lowerSet :: Ord a = SetM a — Set a
lowerSet = lower returnSet bindSet

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

Embedding Constrained Monadic Computations

{-# LANGUAGE GADTs, RankNTypes, ScopedTypeVariables #-}

Constrained Normalised Monads as a GADT

data NM :: (¥ — Constraint) — (* — %) — * — % where
Return :: a —+NMcta
Bind tcx=tx—(x—>NMcta) >NMcta

Folding Monadic Computations

fold :Vacrt.(a—r)— (Vxecx=tx—(x—r)—r)—>NMcta—r
fold ret bind = fold’
where
fold : NMcta—r
fold’ (Return a) =reta
fold’ (Bind tx k) = bind tx (fold’ o k)

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

Embedding Constrained Functor Computations

Constrained Normalised Functors as a GADT

data NF :: (x — Constraint) — (* — %) — * — * where
FMap :cx= (x —+a) -tx— NFcta

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

Embedding Constrained Functor Computations

Constrained Normalised Functors as a GADT

data NF :: (x — Constraint) — (* — %) — * — * where
FMap :cx= (x —+a) -tx— NFcta

Constrained Normalised Functors are (standard) Functors

instance Functor (NF c t) where
fmap::(a—+b) > NFcta—NFctb
fmap g (FMap h tx) = FMap (g o h) tx -- composition law

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

Embedding Constrained Functor Computations

Constrained Normalised Functors as a GADT

data NF :: (x — Constraint) — (* — %) — * — * where
FMap :cx= (x —+a) -tx— NFcta

v

Lifting and Lowering

liftNF :ca=ta —+ NFcta
liftNF ta = FMap id ta -- identity law

lowerNF :: (Vx.cx= (x —+a) »>tx—ta) > NFcta—ta
lowerNF fmp (FMap g tx) = fmp g tx

Neil Sculthorpe The Constrained-Monad Problem

Embedding and Normalisation

A Normal Form for Applicative Computations

f (xy — a) f Xy
prim

fx(nfl)

prim

f(xg = ... = %, — a)

®
f(xg > %2 — ... > %, = a) f x1
pure g prim

Neil Sculthorpe The Constrained-Monad Problem

Remarks

Remarks

@ The normalisation solution requires a normal form where all
existential types are parameters on primitive operations. E.g.
e this is true of Category
e but not Arrow

Neil Sculthorpe The Constrained-Monad Problem

Remarks

Remarks

@ The normalisation solution requires a normal form where all
existential types are parameters on primitive operations. E.g.
e this is true of Category
e but not Arrow
@ The monadic normalisation is the same as used by Unimo [Lin06],
MonadPrompt [IF08], and Operational [Apf10], and brings the same
benefits:
e enforces the monad laws
e separates structure from interpretation
e allows multiple interpretations

Neil Sculthorpe The Constrained-Monad Problem

Remarks

Remarks

@ The normalisation solution requires a normal form where all
existential types are parameters on primitive operations. E.g.
e this is true of Category
e but not Arrow
@ The monadic normalisation is the same as used by Unimo [Lin06],
MonadPrompt [IF08], and Operational [Apf10], and brings the same
benefits:
e enforces the monad laws
e separates structure from interpretation
e allows multiple interpretations

@ The first use of normalisation to overcome the constrained-monad
problem was by the RMonad library [SG08].

Neil Sculthorpe The Constrained-Monad Problem

Remarks

Remarks

@ The normalisation solution requires a normal form where all
existential types are parameters on primitive operations. E.g.
e this is true of Category
e but not Arrow
@ The monadic normalisation is the same as used by Unimo [Lin06],
MonadPrompt [IF08], and Operational [Apf10], and brings the same
benefits:
e enforces the monad laws
e separates structure from interpretation
e allows multiple interpretations
@ The first use of normalisation to overcome the constrained-monad
problem was by the RMonad library [SG08].

@ An alternative means of normalising is to use a continuation
transformer [PAS12].

Neil Sculthorpe The Constrained-Monad Problem

Remarks

Remarks

@ The normalisation solution requires a normal form where all
existential types are parameters on primitive operations. E.g.
e this is true of Category
e but not Arrow
@ The monadic normalisation is the same as used by Unimo [Lin06],
MonadPrompt [IF08], and Operational [Apf10], and brings the same
benefits:

e enforces the monad laws
e separates structure from interpretation
e allows multiple interpretations
@ The first use of normalisation to overcome the constrained-monad
problem was by the RMonad library [SG08].
@ An alternative means of normalising is to use a continuation
transformer [PAS12].
@ Normalisation preserves semantics, but can change the operational
behaviour of the monad.

Neil Sculthorpe The Constrained-Monad Problem

Remarks

Further Reading

See our paper for more details:

W Neil Sculthorpe, Jan Bracker, George Giorgidze and Andy Gill.
The Constrained-Monad Problem.
In International Conference on Functional Programming. ACM, 2013.

http://www.ittc.ku.edu/~neil/publications.html.

Neil Sculthorpe The Constrained-Monad Problem

http://www.ittc.ku.edu/~neil/publications.html

Remarks

References

@ Heinrich Apfelmus.
The Operational monad tutorial.
The Monad.Reader, 15:37-55, 2010.

@ Ryan Ingram and Bertram Felgenhauer, 2008.
http://hackage.haskell.org/package/MonadPrompt.

@ Chuan-kai Lin.
Programming monads operationally with Unimo.

In International Conference on Functional Programming, pages 274-285. ACM,
2006.

@ Anders Persson, Emil Axelsson, and Josef Svenningsson.

Generic monadic constructs for embedded languages.

In Implementation and Application of Functional Languages 2011, volume 7257
of LNCS, pages 85-99. Springer, 2012.

@ Ganesh Sittampalam and Peter Gavin, 2008.
http://hackage.haskell.org/package/rmonad.

Neil Sculthorpe The Constrained-Monad Problem

http://hackage.haskell.org/package/MonadPrompt
http://hackage.haskell.org/package/rmonad

	Monads
	The Problem
	Constraint Kinds
	Restricted Type Classes
	Embedding and Normalisation
	Remarks

