Functional Reactive Programming (FRP) is an approach to reactive programming where systems are structured as networks of functions operating on signals. FRP is based on the synchronous data-flow paradigm and supports both continuous-time and discrete-time signals (hybrid systems). What sets FRP apart from most other languages for similar applications is its support for systems with dynamic structure and for higher-order reactive constructs. Statically guaranteeing correctness properties of programs is an attractive proposition. This is true in particular for typical application domains for reactive programming such as embedded systems. To that end, many existing reactive languages have type systems or other static checks that guarantee domain-specific properties, such as feedback loops always being well-formed. However, they are limited in their capabilities to support dynamism and higher-order data-flow compared with FRP. Thus, the onus of ensuring such properties of FRP programs has so far been on the programmer as established static techniques do not suffice. We address this concern by embedding an implementation of FRP in Agda, leveraging the Agda type system to craft a domain-specific (dependent) type system for FRP. As the implementation passes the Agda type, coverage, and termination checks, we know our type system is safe.