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Motivation

Reactive Programming

@ Reactive Program: one that continually interacts with its
environment, interleaving input and output in a timely manner.

@ Examples: MP3 players, robot controllers, video games,
aeroplane control systems. . .

@ Contrast with transformational programs, which take all input
at the start of execution and produce all output at the end
(e.g. a compiler).
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Motivation

Motivation

@ Existing reactive programming languages make a trade-off:
@ Static safety guarantees vs Expressiveness
@ Most emphasise safety guarantees:

@ Absence of deadlock, absence of run-time errors, etc...
o Often crucial in reactive domains.

@ Functional Reactive Programming (FRP):

o Very expressive.
@ Lacks many safety guarantees.

@ This work: using dependent types to get safety guarantees
within FRP without sacrificing expressiveness.
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Outline

Outline

@ Motivation

© Outline

© Dependent Types in FRP

@ Functional Reactive Programming (FRP)
© New Type System

@ Safe Feedback Loops

@ Safe Initialisation of Signals

© Summary
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DT in FRP

Dependent Types in FRP

@ A domain-specific dependent type system for FRP that
enforces safety properties.
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@ A domain-specific dependent type system for FRP that
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@ A proof of the soundness of the type system, in the form of an
Agda implementation.
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DT in FRP

Dependent Types in FRP

@ A domain-specific dependent type system for FRP that
enforces safety properties.

@ A proof of the soundness of the type system, in the form of an
Agda implementation.

@ In development: a Haskell implementation (using GHC
language extensions).

@ Dependently typed language.

@ Similarities with Haskell.

@ Totality and termination checks.
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FRP

Functional Reactive Programming

@ A functional approach to reactive programming.
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FRP

Functional Reactive Programming

@ A functional approach to reactive programming.

@ Usually a domain specific embedding inside an existing
functional language (e.g. Haskell).

@ Fundamental concept: time varying values called signals.

Signal A ~ Time — A

@ We (following the FRP language Yampa) take signal functions
as the basic building blocks of our language.

@ Signal functions are (conceptually) functions mapping signals
to signals.

SF AB ~ Signal A — Signal B

Example: Robot Controller

RobotController = SF Sensor ControlValue
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Signal Functions

@ All signal functions are (temporally) causal: current output
does not depend upon future input.
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Signal Functions

@ All signal functions are (temporally) causal: current output
does not depend upon future input.

@ We build FRP programs by composing signal functions to form
signal function networks.

Implementing Signal Functions

@ In practise, FRP implementations run signal functions over a
discrete sequence of time samples (synchronously).

@ This is hidden by the signal function abstraction.
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FRP

Synchronous Data-Flow Networks

Example: A Signal Function Network

@ Similar to the synchronous data-flow languages (Esterel,
Lustre, Lucid Synchrone etc...).

o FRP differs in that it allows dynamic higher-order system
structures, but lacks some safety guarantees.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Synchronous Data-Flow Networks

Example: A Signal Function Network

@ Similar to the synchronous data-flow languages (Esterel,
Lustre, Lucid Synchrone etc...).

o FRP differs in that it allows dynamic higher-order system
structures, but lacks some safety guarantees.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Hybrid Signals

@ FRP is also hybrid: continuous-time and discrete-time signals.
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@ FRP is also hybrid: continuous-time and discrete-time signals.
@ We call discrete-time signals event signals.

@ Event signals are usually embedded in continuous-time signals
using an option type:

Event A = Signal (Maybe A)
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Hybrid Signals

@ FRP is also hybrid: continuous-time and discrete-time signals.
@ We call discrete-time signals event signals.

@ Event signals are usually embedded in continuous-time signals
using an option type:

Event A = Signal (Maybe A)

@ Problems:

s Insufficiently abstract to exploit their discrete properties.
@ Can lead to conceptual errors by the programmer.
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Type System

Signal Vectors

@ Signal Vector: a heterogeneous vector of signals with the time
domain explicit in the type.
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Type System

Signal Vectors

@ Signal Vector: a heterogeneous vector of signals with the time
domain explicit in the type.

@ Signal Descriptor: a type and time domain (C or E).
@ Signal Vector Descriptor: a list of signal descriptors.

Example: A Signal Vector Descriptor

[C Bool, E (Tree Z), C R]
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Type System

Signal Vectors

@ Signal Vector: a heterogeneous vector of signals with the time
domain explicit in the type.

@ Signal Descriptor: a type and time domain (C or E).
@ Signal Vector Descriptor: a list of signal descriptors.

Example: A Signal Vector Descriptor
[C Bool, E (Tree Z), C R]

Example: Some Primitive Signal Functions
now : SF [] [E Unit]
time : SF [] [C Time]
edge : SF [C Bool] [E Unit]
| :SF[CR][CR]
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Type System

Constructing Signal Functions

Primitive Combinators
pure :(a — b) — SF[Ca][Cb]
_>>_:SFasbs — SF bscs — SF as cs
_#_ : SFascs — SF bsds — SF (as -+ bs) (cs 4 ds)
loop : SF (as+Hcs) (bs+ds) — SF dscs — SF as bs

Graphical Representations

Skkk

sfl
==l =N G
> sf2 sf2
e = PPl ==
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Type System

Constructing Signal Functions

Example: The after Signal Function

The signal function after t produces an event at time t.

after : Time — SF [] [E Unit]
after t = time >> pure (> t) >> edge

time ':Di (Zg ':Di edge
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Feedback Loops

Well Defined Feedback Loops

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Feedback Loops

Well Defined Feedback Loops

@ Badly defined feedback loops can cause a program to diverge.
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are broken by a decoupled signal function.

@ Decoupled signal function: current output only depends upon
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Feedback Loops

Well Defined Feedback Loops

@ Badly defined feedback loops can cause a program to diverge.

@ Feedback loops are well defined if somewhere in the cycle they
are broken by a decoupled signal function.

@ Decoupled signal function: current output only depends upon
its past inputs.

@ Methods of decoupling: time delays, infinitesimal delays, some
primitives (e.g. integration using the rectangle rule). ..

Examples: Loops

Decoupled Loop Instantaneous Loop
C?@ﬁ@j9 PGD-%EM j$
lldelay 51: @

4
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Feedback Loops

Existing Approaches to Decoupling

Relying on the programmer to correctly define loops.

@ Does not restrict expressiveness.
@ Easy to introduce bugs into programs.

@ Most FRP variants take this approach.
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Feedback Loops

Existing Approaches to Decoupling

Relying on the programmer to correctly define loops.

@ Does not restrict expressiveness.
@ Easy to introduce bugs into programs.
@ Most FRP variants take this approach.

Explicit use of a decoupling primitive in all recursive definitions.

@ Can be confirmed as safe by the type checker (conservatively).

@ Limits expressiveness (in particular, structural dynamism and
higher-order signal functions).

@ Most synchronous data-flow languages take this approach.
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Feedback Loops

Our Approach: Decoupledness in the Types

Index signal functions by booleans to denote decoupledness.

Primitive Combinators Indexed by Decoupledness

pure :(a — b) — SF[Ca][Cb] false

_>>_:SFasbsd; — SFbscsdy, — SFascs (d; Vdy)

_#_ :SFascsd; — SFbsdsdy, — SF (as-+-bs) (cs+ds) (di A dy)
loop : SF (as+-cs) (bs+ds) d — SF ds cs true — SF as bs d

I loop I

— I sfl ﬂ>

sf2
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Feedback Loops

Our Approach: Decoupledness in the Types

Index signal functions by booleans to denote decoupledness.

Primitive Combinators Indexed by Decoupledness

pure :(a — b) — SF[Ca][Cb] false

_>>_ :SFasbsd; — SFbscsd, — SFascs (d; Vdy)

_#_ :SFascsd; — SFbsdsdy, — SF (as-+-bs) (cs+ds) (di A dy)
loop : SF (as+-cs) (bs+ds) d — SF ds cs true — SF as bs d

Examples: Primitive Signal Functions Indexed by Decoupledness

now : SF [] [E Unit] true

time : SF [] [C Time] true

edge : SF [C Bool] [E Unit] false
J :SF[CR][CR]?
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Initialisation

Uninitialised Signals
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Initialisation

Uninitialised Signals

The Signal Function
@ Conceptually an infinitesimal time delay.
@ Decoupled.

@ Initial output is undefined.
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Initialisation

Uninitialised Signals

The Signal Function
@ Conceptually an infinitesimal time delay.
@ Decoupled.

@ Initial output is undefined.

Initialisation Primitives
pre : SF[Ca] [C a] true
initialise : a — SF [C a] [C a] false
iPre :a — SF[Ca] [Ca] true
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Initialisation

Uninitialised Signals

Primitives updated with Initialisation Descriptors

pure  :(a — b) — SF[Cia][Cib]false

pre : SF [Cinit a] [C unin a] true

initialise : a — SF [C unin a] [C init a] false

iPre :a — SF [Cinit a] [C init a] true
Boolean Synonyms

init = true

unin = false

Event signals are only defined at discrete points in time, so there is
no need to ensure initialisation.
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Summary

Summary

@ FRP and synchronous data-flow languages make a trade-off
between expressiveness and safety.

@ Dependent types allow us to have FRP with safety guarantees,
while retaining dynamic higher-order data-flow.
@ Examples:

@ Absence of instantaneous feedback loops.
o Correct initialisation of signals.

@ See the paper for further details.
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