Safe Functional Reactive Programming
through Dependent Types

Neil Sculthorpe and Henrik Nilsson

School of Computer Science
University of Nottingham
United Kingdom
{nas,nhn}@cs.nott.ac.uk

The 14th International Conference on Functional Programming

Edinburgh, Scotland
31st August 2009

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation

Reactive Programming

@ Reactive Program: one that continually interacts with its
environment, interleaving input and output in a timely manner.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation

Reactive Programming

@ Reactive Program: one that continually interacts with its
environment, interleaving input and output in a timely manner.

@ Examples: MP3 players, robot controllers, video games,
aeroplane control systems. . .

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation

Reactive Programming

@ Reactive Program: one that continually interacts with its
environment, interleaving input and output in a timely manner.

@ Examples: MP3 players, robot controllers, video games,
aeroplane control systems. . .

@ Contrast with transformational programs, which take all input
at the start of execution and produce all output at the end
(e.g. a compiler).

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation

Motivation

@ Existing reactive programming languages make a trade-off:
@ Static safety guarantees vs Expressiveness

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation

Motivation

@ Existing reactive programming languages make a trade-off:
@ Static safety guarantees vs Expressiveness
@ Most emphasise safety guarantees:

@ Absence of deadlock, absence of run-time errors, etc...
o Often crucial in reactive domains.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation

Motivation

@ Existing reactive programming languages make a trade-off:
@ Static safety guarantees vs Expressiveness
@ Most emphasise safety guarantees:

@ Absence of deadlock, absence of run-time errors, etc...
o Often crucial in reactive domains.

@ Functional Reactive Programming (FRP):

o Very expressive.
@ Lacks many safety guarantees.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation

Motivation

@ Existing reactive programming languages make a trade-off:
@ Static safety guarantees vs Expressiveness
@ Most emphasise safety guarantees:

@ Absence of deadlock, absence of run-time errors, etc...
o Often crucial in reactive domains.

@ Functional Reactive Programming (FRP):

o Very expressive.
@ Lacks many safety guarantees.

@ This work: using dependent types to get safety guarantees
within FRP without sacrificing expressiveness.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Outline

Outline

@ Motivation

© Outline

© Dependent Types in FRP

@ Functional Reactive Programming (FRP)
© New Type System

@ Safe Feedback Loops

@ Safe Initialisation of Signals

© Summary

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

DT in FRP

Dependent Types in FRP

@ A domain-specific dependent type system for FRP that
enforces safety properties.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

DT in FRP

Dependent Types in FRP

@ A domain-specific dependent type system for FRP that
enforces safety properties.

@ A proof of the soundness of the type system, in the form of an
Agda implementation.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

DT in FRP

Dependent Types in FRP

@ A domain-specific dependent type system for FRP that
enforces safety properties.

@ A proof of the soundness of the type system, in the form of an
Agda implementation.

@ Dependently typed language.

@ Similarities with Haskell.

@ Totality and termination checks.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

DT in FRP

Dependent Types in FRP

@ A domain-specific dependent type system for FRP that
enforces safety properties.

@ A proof of the soundness of the type system, in the form of an
Agda implementation.

@ In development: a Haskell implementation (using GHC
language extensions).

@ Dependently typed language.

@ Similarities with Haskell.

@ Totality and termination checks.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

FRP

Functional Reactive Programming

@ A functional approach to reactive programming.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

FRP

Functional Reactive Programming

@ A functional approach to reactive programming.
@ Usually a domain specific embedding inside an existing
functional language (e.g. Haskell).

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

FRP

Functional Reactive Programming

@ A functional approach to reactive programming.

@ Usually a domain specific embedding inside an existing
functional language (e.g. Haskell).

@ Fundamental concept: time varying values called signals.

Signal A ~ Time — A

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

FRP

Functional Reactive Programming

@ A functional approach to reactive programming.

@ Usually a domain specific embedding inside an existing
functional language (e.g. Haskell).

@ Fundamental concept: time varying values called signals.

Signal A ~ Time — A

@ We (following the FRP language Yampa) take signal functions
as the basic building blocks of our language.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

FRP

Functional Reactive Programming

@ A functional approach to reactive programming.

@ Usually a domain specific embedding inside an existing
functional language (e.g. Haskell).

@ Fundamental concept: time varying values called signals.

Signal A ~ Time — A

@ We (following the FRP language Yampa) take signal functions
as the basic building blocks of our language.

@ Signal functions are (conceptually) functions mapping signals
to signals.

SF AB ~ Signal A — Signal B

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

FRP

Functional Reactive Programming

@ A functional approach to reactive programming.

@ Usually a domain specific embedding inside an existing
functional language (e.g. Haskell).

@ Fundamental concept: time varying values called signals.

Signal A ~ Time — A

@ We (following the FRP language Yampa) take signal functions
as the basic building blocks of our language.

@ Signal functions are (conceptually) functions mapping signals
to signals.

SF AB ~ Signal A — Signal B

Example: Robot Controller

RobotController = SF Sensor ControlValue

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Signal Functions

@ All signal functions are (temporally) causal: current output
does not depend upon future input.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Signal Functions

@ All signal functions are (temporally) causal: current output
does not depend upon future input.

@ We build FRP programs by composing signal functions to form
signal function networks.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Signal Functions

@ All signal functions are (temporally) causal: current output
does not depend upon future input.

@ We build FRP programs by composing signal functions to form
signal function networks.

Implementing Signal Functions

@ In practise, FRP implementations run signal functions over a
discrete sequence of time samples (synchronously).

@ This is hidden by the signal function abstraction.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

FRP

Synchronous Data-Flow Networks

Example: A Signal Function Network

@ Similar to the synchronous data-flow languages (Esterel,
Lustre, Lucid Synchrone etc...).

o FRP differs in that it allows dynamic higher-order system
structures, but lacks some safety guarantees.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

FRP

Synchronous Data-Flow Networks

Example: A Signal Function Network

@ Similar to the synchronous data-flow languages (Esterel,
Lustre, Lucid Synchrone etc...).

o FRP differs in that it allows dynamic higher-order system
structures, but lacks some safety guarantees.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Hybrid Signals

@ FRP is also hybrid: continuous-time and discrete-time signals.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Hybrid Signals

@ FRP is also hybrid: continuous-time and discrete-time signals.

@ We call discrete-time signals event signals.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Hybrid Signals

@ FRP is also hybrid: continuous-time and discrete-time signals.
@ We call discrete-time signals event signals.

@ Event signals are usually embedded in continuous-time signals
using an option type:

Event A = Signal (Maybe A)

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Hybrid Signals

@ FRP is also hybrid: continuous-time and discrete-time signals.
@ We call discrete-time signals event signals.

@ Event signals are usually embedded in continuous-time signals
using an option type:

Event A = Signal (Maybe A)

@ Problems:

s Insufficiently abstract to exploit their discrete properties.
@ Can lead to conceptual errors by the programmer.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Type System

Signal Vectors

@ Signal Vector: a heterogeneous vector of signals with the time
domain explicit in the type.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Type System

Signal Vectors

@ Signal Vector: a heterogeneous vector of signals with the time
domain explicit in the type.

@ Signal Descriptor: a type and time domain (C or E).

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Type System

Signal Vectors

@ Signal Vector: a heterogeneous vector of signals with the time
domain explicit in the type.

@ Signal Descriptor: a type and time domain (C or E).
@ Signal Vector Descriptor: a list of signal descriptors.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Type System

Signal Vectors

@ Signal Vector: a heterogeneous vector of signals with the time
domain explicit in the type.

@ Signal Descriptor: a type and time domain (C or E).
@ Signal Vector Descriptor: a list of signal descriptors.

Example: A Signal Vector Descriptor

[C Bool, E (Tree Z), C R]

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Type System

Signal Vectors

@ Signal Vector: a heterogeneous vector of signals with the time
domain explicit in the type.

@ Signal Descriptor: a type and time domain (C or E).
@ Signal Vector Descriptor: a list of signal descriptors.

Example: A Signal Vector Descriptor
[C Bool, E (Tree Z), C R]

Example: Some Primitive Signal Functions
now : SF [] [E Unit]
time : SF [] [C Time]
edge : SF [C Bool] [E Unit]
| :SF[CR][CR]

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Type System

Constructing Signal Functions

Primitive Combinators
pure :(a — b) — SF[Ca][Cb]
>>:SFasbs — SF bscs — SF as cs
: SFascs — SF bsds — SF (as -+ bs) (cs 4 ds)
loop : SF (as+Hcs) (bs+ds) — SF dscs — SF as bs

Graphical Representations

Skkk

sfl
==l =N G
> sf2 sf2
e = PPl ==

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Type System

Constructing Signal Functions

Example: The after Signal Function

The signal function after t produces an event at time t.

after : Time — SF [] [E Unit]
after t = time >> pure (> t) >> edge

time ':Di (Zg ':Di edge

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Feedback Loops

Well Defined Feedback Loops

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Feedback Loops

Well Defined Feedback Loops

@ Badly defined feedback loops can cause a program to diverge.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Feedback Loops

Well Defined Feedback Loops

@ Badly defined feedback loops can cause a program to diverge.

@ Feedback loops are well defined if somewhere in the cycle they
are broken by a decoupled signal function.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Feedback Loops

Well Defined Feedback Loops

@ Badly defined feedback loops can cause a program to diverge.

@ Feedback loops are well defined if somewhere in the cycle they
are broken by a decoupled signal function.

@ Decoupled signal function: current output only depends upon
its past inputs.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Feedback Loops

Well Defined Feedback Loops

@ Badly defined feedback loops can cause a program to diverge.

@ Feedback loops are well defined if somewhere in the cycle they
are broken by a decoupled signal function.

@ Decoupled signal function: current output only depends upon
its past inputs.

@ Methods of decoupling: time delays, infinitesimal delays, some
primitives (e.g. integration using the rectangle rule). ..

Examples: Loops

Decoupled Loop Instantaneous Loop
C?@ﬁ@j9 PGD-%EM j$
lldelay 51: @

4

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Feedback Loops

Existing Approaches to Decoupling

Relying on the programmer to correctly define loops.

@ Does not restrict expressiveness.
@ Easy to introduce bugs into programs.

@ Most FRP variants take this approach.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Feedback Loops

Existing Approaches to Decoupling

Relying on the programmer to correctly define loops.

@ Does not restrict expressiveness.
@ Easy to introduce bugs into programs.
@ Most FRP variants take this approach.

Explicit use of a decoupling primitive in all recursive definitions.

@ Can be confirmed as safe by the type checker (conservatively).

@ Limits expressiveness (in particular, structural dynamism and
higher-order signal functions).

@ Most synchronous data-flow languages take this approach.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Feedback Loops

Our Approach: Decoupledness in the Types

Index signal functions by booleans to denote decoupledness.

Primitive Combinators Indexed by Decoupledness

pure :(a — b) — SF[Ca][Cb] false

>>:SFasbsd; — SFbscsdy, — SFascs (d; Vdy)

:SFascsd; — SFbsdsdy, — SF (as-+-bs) (cs+ds) (di A dy)
loop : SF (as+-cs) (bs+ds) d — SF ds cs true — SF as bs d

I loop I

— I sfl ﬂ>

sf2

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Feedback Loops

Our Approach: Decoupledness in the Types

Index signal functions by booleans to denote decoupledness.

Primitive Combinators Indexed by Decoupledness

pure :(a — b) — SF[Ca][Cb] false

>> :SFasbsd; — SFbscsd, — SFascs (d; Vdy)

:SFascsd; — SFbsdsdy, — SF (as-+-bs) (cs+ds) (di A dy)
loop : SF (as+-cs) (bs+ds) d — SF ds cs true — SF as bs d

Examples: Primitive Signal Functions Indexed by Decoupledness

now : SF [] [E Unit] true

time : SF [] [C Time] true

edge : SF [C Bool] [E Unit] false
J :SF[CR][CR]?

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Initialisation

Uninitialised Signals

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Initialisation

Uninitialised Signals

The Signal Function
@ Conceptually an infinitesimal time delay.
@ Decoupled.

@ Initial output is undefined.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Initialisation

Uninitialised Signals

The Signal Function
@ Conceptually an infinitesimal time delay.
@ Decoupled.

@ Initial output is undefined.

Initialisation Primitives
pre : SF[Ca] [C a] true
initialise : a — SF [C a] [C a] false
iPre :a — SF[Ca] [Ca] true

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Initialisation

Uninitialised Signals

Primitives updated with Initialisation Descriptors

pure :(a — b) — SF[Cia][Cib]false

pre : SF [Cinit a] [C unin a] true

initialise : a — SF [C unin a] [C init a] false

iPre :a — SF [Cinit a] [C init a] true
Boolean Synonyms

init = true

unin = false

Event signals are only defined at discrete points in time, so there is
no need to ensure initialisation.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

Summary

Summary

@ FRP and synchronous data-flow languages make a trade-off
between expressiveness and safety.

@ Dependent types allow us to have FRP with safety guarantees,
while retaining dynamic higher-order data-flow.
@ Examples:

@ Absence of instantaneous feedback loops.
o Correct initialisation of signals.

@ See the paper for further details.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types

	Motivation
	Outline
	Dependent Types in FRP
	Functional Reactive Programming (FRP)
	New Type System
	Safe Feedback Loops
	Safe Initialisation of Signals
	Summary

